NAS-103

(Following Paper ID and Roll No. to be filled in your Answer Book) PAPER ID: 199125 Roll No.

B. Tech.

(SEM. I) (ODD SEM.) THEORY EXAMINATION, 2014-15

ENGG. MATHEMATICS-I

Time: 3 Hours]

[Total Marks: 100

Attempt any FOUR parts: 1

5x4 = 20

- $(x^{2}-1)y_{n-2} + (2n+1)xy_{n-1} + (n^{2}-m^{2})y_{n} = 0.$ Prove that $xu_{x} + yu_{y} = \frac{5}{2} \tan u$ if a) If $v^{\frac{1}{m}} + v^{\frac{-1}{m}} = 2x$ prove that

$$u = \sin^{-1}\left(\frac{x^3 + y^3}{\sqrt{x} + \sqrt{y}}\right).$$

If V=f(2x-3y,3y-4z,4z-2x) prove that $6V_{x} + 4V_{y} + 3V_{z} = 0$

- Find $\frac{du}{dt}$ as a total derivative and verify the result by direct substitution if $u = x^2 + y^2 + z^2$ and $x = e^{2t}$. $y = e^{2t} \cos 3t$, $z = e^{2t} \sin 3t$
- Trace the curve $y^2(2a-x)=x^3$
- Find the curve $r^2 = a^2 \cos 2\theta$

Attempt any TWO parts:

10x2 = 20

- Expand $e^x \log(1+y)$ in powers of x and y upto terms of third degree.
- A rectangle box open at the top is to have 32cubic b) ft. Find the dimensions of the box requiring least material for its construction.
- c) Find $\frac{\partial(x, y, z)}{\partial(r, \theta, \phi)}$ if $x = \sqrt{vw}$, $y = \sqrt{uw}$, $z = \sqrt{uv}$ and

 $u = r \sin \theta \cos \phi, v = r \sin \theta \sin \phi, w = r \cos \theta$

Attempt any TWO parts:

a) Reduce A to Echelon form and then to its row canonical

form where
$$A = \begin{pmatrix} 1 & 3 & -1 & 2 \\ 0 & 11 & -5 & 3 \\ 2 & -5 & 3 & 1 \\ 4 & 1 & 1 & 5 \end{pmatrix}$$
. Hence find the rank

of A.

- b) Verify Cayley-Hamilton theorem for $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{pmatrix}$. Hence find A^{-1} .
- c) Solve by calculating the inverse by elementary row operations: $x_1 + x_2 + x_3 + x_4 = 0$, $x_1 + x_2 + x_3 x_4 = 4$, $x_1 + x_2 x_3 + x_4 = -4$, $x_1 x_2 + x_3 + x_4 = 2$.
- 4 Attempt any TWO parts :

10x2 = 20

- a) Determine the area bounded by the curves xy = 2, $4y=x^2$ and y = 4.
- b) Change the order of integration and evaluate $\int_{0}^{1} \int_{x^{2}}^{2-x} xydydx$
- c) Find the volume and the mass contained in the solid region in the first octant of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} = 1$ if the density at any point $\rho(x, y, z) = kxyz$.

- a) If u=x+y+z, $v=x^2+y^2+x^2$, w=yz+zx+xy. Prove that grad u, grad v and grad w are coplanar.
- b) Verify Stokes theorem for $F = (x^2 + y^2)I 2xyJ$ taken around the rectangle bounded by the lines $x = \pm a$, y = 0, y = b
- Evaluate $\int_{S} (yzI + zxJ + xyK)$ ds where S is the surface of the sphere $x^2+y^2+x^2=a^2$ in the first octant.