Unit-1

Introduction: Engineering Mechanics: The effect of external forces on the RIGID BODY.

Examples:

Statics: Body is at rest.

Daynamics:

- (a) Kinetics: Forces are considered by which motion takes place.
- (b) Kinematics: Forces are not to be considered.

RIGID BODY:

(a) The Distance between two points never changes.

EM-3

(iii) Newton's IIIrd law (Law of Action/Reaction)

(iv) Law of Parallelogram (To Find Resultant of two Concurrent force)

$$R = \sqrt{P^2 + Q^2 + 2PQ\cos\phi}$$

P, Q – Two concurrent force $\phi \rightarrow \text{angle } b / w, P \text{ and } Q.$

EM-5

RESOLUTION OF FORCES:

Every Inclined force gives two components

Cos-Component (जिधर से कोण (जिधर से कोण दिया हो) ना दिया हो)

Y-axis

cos comp.

F

sin comp.

X-axis

F sin ϕ

$$\Sigma X = F_1 + F_5 - F_2$$

and $\Sigma Y = F_4 + F_6 - F_3$

Fig. (b)

In Fig. (b)

$$R = \sqrt{\Sigma X^2 + \Sigma Y^2}$$

and
$$\theta = \tan^{-1} \frac{\Sigma Y}{\Sigma X}$$

TYPES OF FORCES ON BODY:

- Applied forces (Forces applied externally to a body)
- 2. Non-applied Forces
 - (a) Self Weight: Self weight (w=mg) always acts in vertically downward direction.
 - (b) Reaction from surface of contact: It is always perpendicular to surface and towards the body.

BODIES

F.B.D of Ball

$$\Sigma X = 0$$
, $R - T \sin \alpha = 0$

$$\Sigma Y = 0$$
, $T \cos \alpha - W = 0$

Unit-2

Truss: A structure made up of several bars (or members) are riveted or pin jointed together are called truss.

Types of Truss:

- 1. Perfect Truss: It satisfy the equation M = 2J 3
- 2. Imperfect Truss:

 $M \neq 2J - 3$

(a) Deficient truss:

M < 2J - 3

(b) Redundant truss:

M > 2J - 3

where M = No. of memebrs J = No. of joints

In figures, AB, BC, CA are the members.

A, B and C are the joints.

METHOD OF JOINTS Step to Solved Truss Problems:

- First we find all reactions by using equilibrium equations.
- After that we select the joints at which two unknown quantity of force are acting.
- 3. Then we make the F.B.D. at the joint and find all forces in members by

- After cutting section consider one side of the section line and draw freebody diagram.
- Then the unknown forces in the members are determined by using:

 $\Sigma x = 0$, $\Sigma y = 0$ and $\Sigma M = 0$

For Example:
Section cutting 2 Members

Unit-3 CENTROID:

It is the point of the body where total area of body is supposed to concentrated.

CENTRE OF GRAVITY:

Where total weight of the body is supposed to be concentrated.

Formula Used to Determine Centroid or Centre of Gravity

$$\bar{X} = \frac{A_1 X_1 + A_2 X_2 + \dots}{A_1 + A_2 + \dots},$$

CENTROID OR CENTRE OF GRAVITY OF SOME FIGURE

Plane Figure : Rectangle
 Figure :

Area: $A = B \times H \text{ m}^2$

Co-ordinates:

 $\overline{X} = B/2, \overline{Y} = H/2$

Area :
$$A = \frac{\pi R^2}{2} \text{ m}^2$$

Co-ordinates:

$$\overline{X} = R, \, \overline{Y} = \frac{4R}{3\pi}$$

4. Plane Figure : Triangle Figure :

CENTROID BY VOLUME:

$$\overline{X} = \frac{V_1 x_1 + V_2 x_2 + \dots}{V_1 + V_2 + \dots},$$

$$\overline{Y} = \frac{V_1 y_1 + V_2 y_2 + \dots}{V_1 + V_2 + \dots}$$

where

 $V_1, V_2 \rightarrow \text{Are the volume of the bodies.}$

Mathematically, in fig. (1) R = ma

where,

ma = Inertia force

R = Resultant of system of forces.

For Example:

Apply D'Alembert Principle in case lift moving upward's and downward- Refer Fig. (2) and (3).

WORK ENERGY METHOD FOR TRANSLATION:

$$R \times S = \frac{W}{2g} \left(v^2 - u^2 \right)$$

where,

RS = Work done by the forces act on body.

 $\frac{W}{2g}v^2$ = Final kinetic energy.

 $\frac{W}{2g}u^2 = \text{Initial kinetic energy.}$

FOR CURVILINEAR MOTION

$$W_{net} = \frac{1}{2} I \omega_f^2 - \frac{1}{2} I \omega_i^2.$$

slab called body centroid. These two curves are tangent at point *I* (instantaneous centre).

PLANE MOTION:

A rigid body is said to perform plane motion when all parts of the body moves in parallel planes.

Unit-5 LOAD:

It is an agent which when applied on the body, then the body moves or tries to move.

Classfication of Load:

According to manner of application:

- 1. Dead load or static load
- 2. Live or fluctuating load

STRESS: (o)

The internal resistance set up per unit cross-sectional area is called stress (σ).

$$\sigma = \frac{R}{A}$$

STRESS-STRAIN DIAGRAM FOR MILD STEEL

PRINCIPLE OF SUPER POSITION:

$$P_1 = P_D + P_B - P_C = P_A$$

 $P_2 = P_D - P_C = P_A - P_B$
 $P_3 = P_D = P_A + P_C - P_B$

COMPOSITE SECTION:

In this case we apply

$$\delta I_1 = \delta I_2$$
and
$$P = P_1 + P_2$$

$$= \sigma_1 A_1 + \sigma_2 A_2$$

where
$$\sigma = \frac{P}{A}$$

$$P = Total load.$$

DEFORMATION OF RECTANGULAR TAPER PLATE:

where a and b are width at (1) and (2) point.

t =Thickness.

3. Strain Energy:

$$U = \frac{\sigma^2 AL}{2E}$$

4. Strain Energy Stored

= Work done by falling load

TORSION EQUATION:

$$\frac{T}{J} = \frac{G\theta}{L} = \frac{\tau}{R}$$

where T = Twisting mendent

G = Modulus of rigidity

J = Polar moment of Inertia

 θ = Angle of twist

 $\tau =$ Shear stress

R = Radius of shaft

L =Length of shaft.

ELASTIC CONSTANT:

Relation between E and G

$$E = 2G (1 + \mu)$$

Relation between E, G and K

$$E = \frac{9KG}{(3K + G)}$$

Relation between E and K

$$E = 3K (1 - 2\mu)$$

where E = Modulus of elasticity

G = Modulus of rigidity

K = Bulk modulus

 $\mu = Poisson's ratio$